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We investigate the pseudo-Casimir force acting between two charged surfaces confining a single
polyelectrolyte chain with opposite charge. We expand the exact free energy to the second order in
the local electrostatic field as well as the replicated polymer density field around the mean-field
(saddle-pointsolution. The quadratic terms lead to a fluctuation interaction that is partly due to the
(therma) Casimir effect for the confined electrostatic field and partly due to the pseudo-Casimir
effect due to the confined replicated polymer density field. We study the intersurface separation
dependence of both effects and show that the pseudo-Casimir effect leads to a long range attraction
between the surfaces that decays with an anomalous algebraic exporeht7gfsmaller than the
standard exponent of 2 in the case of Casimir interactions2001 American Institute of Physics.

[DOI: 10.1063/1.1383052

I. INTRODUCTION actions is an exponentially decaying attraction between the
surfaces that persists for all separations greater than the criti-
Charged polymers have received much attention over theal value®”’ In this respect the charged chain between oppo-
years for their indisputable importance in industrial applica-sitely charged surfaces behaves on the mean-field level a lot
tions as well as for their role in fundamental colloid sciencelike a neutral chain with a finite adsorption energy to the two
(for comprehensive introductions, see Refs. 1 and\part  pounding surfaces.
from the study of polymers in the bulk, their interactions  Recent theoretical studfehowever point to the conclu-
with surfaces, as well as polymer-mediated interactioes  sion that thermal fluctuation effects in Coulombic systems,
tween surfaces have been studied on different levéls. ignored on the mean-field level, can hardly ever be consid-
Though polyelectrolyte interaction with charged surfaces isred as negligible. In the limit of small electrostatic coupling
quite similar to the general interaction of polymers with neu-it has been known for a while that thermal fluctuations in an
tral surfaces, the long range nature of the Coulomb potentialinhomogeneous Coulomb fluid lead to zero order van der
introduces additional features and difficulties that make thesw/aals (or equivalently Casimjrforces®® More recent stud-
problems even more difficult to handle. ies of thermal effects in soft matter in genéfat are very
Most of the work on inhomogeneous polyelectrolytesmuch consistent with these findings. It has been established
was done on the mean-field level and the effect of thermathat thermally driven fluctuations of order parameters of con-
fluctuations has not been considered at all. The mean-fielfined systems also lead to long range pseudo-Casimir
picture of the behavior of a polyelectrolyte chain confinedforces!? quite similar in nature to ordinary Casimir forces
between two oppositely charged surfaces that emerged frogxcept that instead of being due to electromagnetic field fluc-
previous studiés’ (see Fig. 1 lets one think that at small tuations they are a consequence of a general order parameter
intersurface separations the polyelectrolyte mediated interagtuctuations (thus pseudeCasimir interactions In view of
tions are quite similar to those in the case of neutral polythis we suspect that similar phenomena should also show up
mers and decay algebraically with separafldit a critical  in the study of fluctuation effects of confined inhomogeneous
value of the intersurface spacing there is a transition of thgolyelectrolytes.
confined polyelectrolyte chain from a monomodal to a bimo-  In order to prove this conjecture we write the partition
dal monomer density distribution. This means that at suffifunction for a polyelectrolyte chain confined between two
ciently large intersurface separations the polymer chain is oappositely charged planar surfaces in such a way that we
the average partly electrostatically adsorbed to both surfacegere able to expand it to quadratic order in the relevant order
and the remaining part of the chalimidgesthe region be- parameters, in this case the local electric field and the repli-
tween the surfaces. The consequence of thesiginginter-  cated polymer density fiel¢see below, around the mean-
field profile and evaluate on this level the effect of thermal
dauthor to whom correspondence should be addressed. Electronic maiﬂucmations' We note that thermal fluctuations deCOUple into
rudolf.podgornik@fiz.uni-lj.si two separate contributions: the Casimir contribution due to
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FIG. 1. Schematic representation of
the mean-field solution. For separa-
tions between the surfaces smaller
then the critical, the monomer density
distribution is monomodal(A). For
separations larger then critical the
monomer density distribution is bimo-
dal (B), corresponding to partial ad-
sorption of the chain to the oppositely

(B) charged surfaces. Parts of the chain
that are not adsorbed act as bridges be-
tween the surface&C).

electric field fluctuations and the pseudo-Casimir contribu\We assume that the intersegment interactions are given by
tion due to the replicated polymer density field fluctuationsthe unscreened Coulombic formV/(r,r')=7%/4meeqy|r

We show that the effect of thermal fluctuations depends onr-r’|, where 7 is the charge per unit length. This is a bit
only one coupling parameter,,-= (47/3)(c/ /1), wherec artificial since we completely ignore the presence of other
is the surface charge density,is the line charge density of mobile ionic species such as counterions and salt ions, but
the polymer chain, and’ is the Kuhn’s segment length. De- represents a clean, tractable model system where fluctuation
pending on the value of this parameter the behavior of theffects can be studied in detalil.

system can be successfully described on the mean-field level Performing now the Hubbard—Stratonovich transforma-
(aye>1) or has to be amended by taking into account thetion for the pair interaction potential, going to the grand ca-
fluctuation terms &ye~1). The most important conse- nonical ensemble with a fixed chemical poteniaffor the
guence of the fluctuation effects seems to be the long rang@onomers and adequately removing the closed loop polymer
pseudo-Casimir force, with an anomalous algebraic deperconfigurations from the partition functiona then—0 limit
dence on the intersurface separations with an exponent 1.6f an O(n) scalar field theory with the field

due to the confined fluctuations of the polymer density field= (1,5, ... ,¥,), we remain with the de Gennes—des
that decays slower than the usual Casifoir equivalently Cloizeaux representation for the free energy of a charged
van der Waalsforce. polyelectrolyte chairt?

The plan of the paper is as follows: In order to investi-
gate the fluctuation effects we first write the free energy of a 1
confined charged polymer chain between two surfaces in the  #(x.,8)=lim —log Z(x.8)
form of anO(n) scalar field theory. From here the free en- n-0
ergy is obtained via the standand-0 replica trick'® Since 1
the mean-field is given by the saddle-point, we then expand = lim — |09f Dp(r)Di(r)
this field theory to the second order around the saddle-point n—0
in both the electrostatic field and the replicated polymer den-
sity field. Calculation of the quadratic corrections to the XeXD(—ﬂJ d*r H[ b(r), ¥i(r)]], ()
mean-field free energy that can be performed exactly gives
the Casimir and pseudo-Casimir interactions mediated by thﬁ/here
confined electrostatic and confined replicated polymer den-
sity fields. We investigate the dependence of the regularized 1,2 1
f!uctl_Jat|0n interaction free energy on th_e intersurface separa-  gH[ ¢(r), yi(r)]= > EE (V )2+ Sh 2 Y2
tion in the limit of small and large spacings compared to the i
critical separation. 1
2 2
+ 5 Beeo( V) +iBr > ¢y
Il. MEAN-FIELD THEORY !
As a point of departure we shall take a model confined ©)
polyelectrolyte system, composed of two surfaces with a N ) )
specified surface charge density)(and a confined, oppo- !N writing Eq. (2) we omitted the determinant dgiée,V?)
sitely charged single polyelectrolyte chain of lendth, de- from the denominator. As is usual on the one-loop expansion

scribed with an Edwards Hamiltonian, level, this term is exactly canceled by the zero order van der
S Waals term that one should add to the final total interaction
_ - free energy. This point is thoroughly explained in Refs. 9 and
Hr(s)]= = j r?(s)ds
[r(s)] 2/ )o (s) 15. See also below.

, The path from here will be to obtain the mean-field so-
4 EJ'N/JN/V(r(S),r(S’))dsdé. 1) lution of the mod_el defined by EqR) viathe saddle-point of
2Jo Jo the O(n) scalar field theory along the lines of Ref. 16 and
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then to evaluate the contribution of quadratic fluctuationsextremely well everywhePeexcept close to the origin where
around the saddle-point to the thermodynamic properties af is small anyway. The reason for introducing this additional
the system. but inessential approximation is that it also helps in trans-

Evaluation of the saddle-point from the field Hamil- forming the first of Egs.(5) from a nonlinear Landau—
tonian Eq.(3) is trivial. One notices immediately that all the Ginzburg-type equation into a linear equation, which can be
Y; satisfy the same saddle-point equation and tius . solved analytically and explicitly in terms of Airy's
With this one can write the dependence of the Hamiltoniarfunctions®

Eq. (3) on n explicitly!” and the limitn—0 can be obtained The electroneutrality demands that at the bounding sur-
straightforwardly. One remains with faces ¢=*a) we have —eey(de/on) =7(N/S) =0,
wheren is the boundary surface normal. Because of the im-
1 o ) .
BFo=—lim = log Z, penetrability of the boundaries to the polymer chain we
n—0 should also have/(z=+a)=0. The unnormalized solution
1 ,2 of the first mean-field equation Ep) can now be obtained
Bl B Y 2 2 2 explicitly in the form,
5| 0| G v peer (V0 | o ]
P(x)~Ai(yo—x)Bi'(yo) —Bi(yo—Xx)Ai'(Yo), (7)
+iBr ¢,¢,2>, (4  where we introduced the dimensionless variables\ 3z,
Xo=A5%a, yo=6uNg?¥/? Ng=(12B87%eex/?) and

where we introduced the mean polymer density figldo ~ Ai(X) andBi(x) are the standard Airy functions. The depen-
that the local monomer density js= ¢ and the local elec- denceyy=Yo(Xo) is obtained from the vanishing density
trostatic mean potentiat=i ¢. In the planparallel geometry field boundary conditions at the two bounding surfaces. We
considered here all the fields depend only on the transvergéerive® thatyo(x,) grows linearly withx, for largex,, and
coordinatez, and the inhomogeneities are confined to thisthereforeup=y,—X, asymptotically approaches a constant
direction only = (z), ¢=¢(z). The saddle-point equa- Up~ —2.34, while for smallx,, y, is negative and behaves
tions of the Hamiltonian Eq(3) can thus be written in the approximately likeyo~ — (7/2x0)?.
form, The main consequence of the mean-field equations is
that for very small intersurface separations the chain is des-

/2 dPy(z) 5 orbed with a monomodal density distributi®A.In this re-
6 dz =Ry(2)+2BTe(2)(2), gime of intersurface separations the interactions between the
(5) surfaces are repulsive, decaying algebraically with plate
d2e(2) 5 separation. At a critical value of the intersurface separation
~ €€ 42 =T1)(2). Xo=1.986 the electrostatic attraction between the monomers

and the surfaces, or more appropriately the repulsion of the

These mean-field equations are exactly equivalent to thos@onomers and the electroneutrality condition for the whole
derived previousl§’ if one takes into account that the poly- system, causes the chain to adsorb to both surfaces creating a
electrolyte chain is the only mobile charge in the systam  polymer bridge leading in its turn to bridging attraction be-
counterions and no saltThe first equation of Eq5) is the  tween the surfaces. This attraction, though exponentially
equation for the density fielgi(z) of the polymer in an in- small, persists for all separations between the surfaces larger
homogeneous external fielez), while the second one is a than the critical. The intersurface pressure is thus repulsive
Poisson—Boltzmann equation for the mean electrostatic pdor x,<1.986 and attractive fox,>1.986. For details, see
tential ¢(z) of a charged polymer chain with charge density Ref. 6.
p(2)=T147(2).

The second equation of E¢G) can be solved explicitly

and its solution can be manipulafed yield a limiting form I FLUCTUATIONS

valid close to the boundaries 2¢&= +a, where the potential We now turn to the contribution of fluctuations around
is largest, the saddle point to the free energy. First we expand the
v Hamiltonian Eq.(3) to the second order in deviations from
eeop(z)=— Tf |z—2'|y%(2')dZ = — 7|z| + O(Z). the mean-fields Eq5). Our treatment of the fluctuation ef-
-a fect will thus be based on a quadrat@ne-loop expansion.

6)  The second functional derivatives of the field Hamiltonian
This expression can be obtained rather straightforwardly bgan be assembled into a Hessian of the fields of(Ex.
Taylor expanding the solution arourzé= =a. In the oppo- /2

site limit, z=0, we can derive V2+u+2iBre 2B,

H=| 6
+a ;
eeop(2)=— TJ lu| 2 (u)du— 742(0) 22+ O(Z%). 2iB7yn —BeeV?
@ whereg andy, are the solutions of the mean-field equations
Since the mean-field is largest close to the boundaries wEg. (5). While integrating out the mean replicated polymer
will use the approximate expression valid strictly only closedensity field and the mean electrostatic field fluctuations we
to z= *a in the whole interval. This approximation works notice that the functional integral ovét fluctuations can be

, ®
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evaluated directly, giving an explicit dependence of the flucintersurface separatiox,=1.986, either from above or be-
tuational partition function om. This is similar to the gen- low, where the mean polymer density field goes through a
eral case treated by EmefyThe limit n—0 can now be monomodal to bimodal transition.

evaluated explicitly leading to the following contribution of Of the first two terms in Eq(9) the first one is trivial to

the fluctuations around the mean-fields in the quadratic ordezvaluate eithewia the van Vleck relation or the eigenvalue
to the free energy, product representation. First of all we introduce the Fourier
decomposition in thexy) plane with a wave vectoR,
since we only need to take into account the boundaries in the
z direction. This leads to the standard zero-ortteerma)
Casimir interaction in the form

1 1 6 T
_= w2y 4 o 2y o P 1 d?
z Indet V)+2'”de< V+/z“+12iz¢(”> SkeT> Inde!(——Jer)
Q

1
BFo>=Ilim 5 logZ,

n—0

dz?
(BTZ) ' ’ ! ! «© h i h
+1zﬂf fd3r a3’ G(r,r") Go(r,r') (r)(r’), :¥J'O Qd0In cos stm Qa | 12
9

whereSis the total area of the interacting boundary surfaces.
where ¢(r) and y(r) are the solutions of the mean-field The second term is trickier. First of all we again intro-
equations Eq(5). The two Green’s functiong/(r,r’) and  duce the Fourier decomposition in thg,y) plane with a
Go(r,r") are the functional inverses defined as wave vectorQ and invoke the approximate solution H@).
Using again the van Vleck identity we derive

6
( -V2+ /fz,u+12§—;<p(r))g(r,r’)=é\°’(r—r’),

1 d? 6 T
—kgTD, Indel — — +Q%+ — +12'8— z
10 2° > ( az [T an e ))
(=V2)Go(r,r')=8%r—r").
SkgT [
The first term in Eq.(9) comes from the confined electric = ?J'o QdQIn(C(Q,a)S(Q,a)), (13

field fluctuations and is in fact the standard zero-order Ca-

simir interaction energy (see below. The second and the \here we decomposed the determinant of the operator into

third terms are due to the confined polymer density fieldyyg separate contributions stemming from symmetric and
fluctuations and thus correspond to the pseudo-Casimir 'nteEintisymmetric modes

actions. The free energy E() is obtained alreadwfter the

cancellation referred to in the discussion following E8). C(Q,z)=Bi’(y(Q))Ai(y(Q)—)\é’:‘z)
and thus represents the total interaction free energy including
the zero order van der Waals contribution. The latter is evalu- —Ai"(y(Q))Bi(Y(Q) —\g2),
ated for a slab of thicknessa2with boundaries impenetrable ) ) 13 (14)
to electrostatic fields. S(Q,z)=Bi(y(Q))Ai(Y(Q)—Ag2)
Let us first deal with the two functional determinants in — Ai(Y(Q))Bi(y(Q)— )\é/sz),

Eqg. (9). Since the mean-field solution depends only on the
transverse coordinatewe need to investigate the functional wherey(Q)z)\gz’S(Qer (6u//?)) while Ai(x) andBi(x)
determinant of an operator of the type(d®/dz®) +V(z)  are the standard Airy functiof8.The Airy function solutions
that can be evaluated in two different ways. One can first ofre of course a consequence of the approximatior(@dor
all find the eigenvalues,, of this operator with the boundary the mean electrostatic potential. The free energy(E®). still
conditionf,(z= =a)=0. The functional determinant comes needs to be properly regularized by subtracting the infinite
out as the product of these eigenvaldésk,. The other pylk and surface terms, see below.
approach would take into account the van Vieck idefitity In what follows we introduced also these dimensionless
involving fy(z), the eigenfunction with zero eigenvalue and ygriables: q2:)\§2/3 2 and u(g,x,xo) =Yy(q,Xe) — X=0?
with bOUndary Conditionsfo(zz —a)=0 and fé(Z: _a) +yO(XO)_X= UO(X0)+q2+ Xo— X. HereyO(XO) is the |arg_
=1.The Iogarithm of the functional determinant can thus b%st zero of the Symmetric functi(m(yo(xo),xo) which cor-
written equivalently(up to an irrelevant—in this context— responds exactly to the zero of the mean-field solution Eq.
additive constantin two different way$® (7) at the two bounding surfacés.
) The third term in Eq(9) appears to be the most difficult
n de< B d—+V(z) one to evaluate but fortunately it is possible to prove that
dz within the approximation Eq(6) its contribution to the fluc-
tuation free energyF, is in fact negligible compared to the
In what follows we will use both representations togetherother two, i.e., Eqs(13) and (14). Taking into account the
with the Fourier decomposition in the,fy) plane and will — approximate form for the mean electrostatic potential (By.
find both equally inadequate when approaching the criticathe last term in Eq(9) can be evaluated explicitly leading to

=> In\,=In[fo(z=a)]. (11)
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p(a)=pPurt Pel 0@ ]+ Pl oy]

2
2 (IBT/)zf fd3r d®r" G(r.r") Go(r,r") ¢(r)g(r’)
€€y’ 1 kgT £(3)
N =5keTu ¥*(z=0) - m +tpr(a), (16
N J dZz|6(z,2',Q=0), (19
(€€g) ) -a

where the first term on the r.h.s. derives from the mean-field
solution, the second one derives from the Casimir term stem-
ming from the electrostatic field fluctuations, first term in Eq.
(9) and the third one derives from the pseudo-Casimir terms
stemming from the replicated density field fluctuations, sec-
ond term in Eq.(9), with

where we took into account that the mean-field solutign)
depends only on the transverse coordiratnd that again
we can introduce the Fourier decomposition in theyj
plane with a wave vectd®. The magnitude of the coupling
contribution Eq.(15) turns out to be much smaller than the
other two, Eqs(12) and(13), and can thus be safely ignored
in numerical computations. 1/ aWya)
The fluctuation free energy:, which is thus composed Pe(a)=— _( 2
only of the contributions from the fluctuational determinants S\ d(2a)
of the electrostatic field and the replicated polymer density
field, still contains the divergent bulk and surface parts to-The next section deals with the evaluation and regularization
gether with the interaction ternis® 7, is thus formally in-  of the fluctuation terms in Eq16).
finite. This infinity can be regularized by subtracting the in-
finite bulk and surface contributiofsand thus in forming

the regularized fluctuation free energy, IV. RESULTS: LARGE INTERSURFACE SEPARATION

Wa(8)=Fa(@) = F5(2). We will first have to regularize the divergent expression
Here F3(a) stands for the form of the fluctuation free en- Eq. (13) by subtracting the divergent terms explicitly in the
ergy for large values of the argument but evaluated at dimit of large x, (to be quantified beloy Whenx, is large
finite a.® enough the argument=u+ X, of the Airy functions in Eqg.

Using now the standard form for the mean-field (14) becomes large too and we can use the asymptotic ex-
pressuré and adding to it the fluctuation contribution, one pansion formula® for the Airy functions to explicitly find
can write for the total pressure between the boundary suthe divergent terms itF5(a). The regularized free energy is
faces, then

: (17

SkeT [ (Bi"(u+xg)Ai(u)—Ai"(u+xg)Bi(u))(Bi(u+Xxg)Ai(u)—Ai(u+xy)Bi(u))
Wz(xo):_f duIn| — : : : : : : : : (18
4 Ju, (Bi (u+xg)Ai(u)—Ai[ (u+xg)Bi(u))(Bi_(u+xXg)Ai(u)—Ai_(u+Xxg)Bi(u))
|
where Ai_, Bi_, Ai, and Bi/ are the lowest order The algebraic decay of the free energy and concomi-

asymptotic expressions for the Airy functioflsThe next tantly of the pressure, indicates that the fluctuation induced
order in the asymptotic expansion of the Airy function is force has a much longer range than the mean field force
Ai,(t)~ —0.07Gt¥3 1A, (t) and in order for it to be neg- Which decays approximately expone_ntl_éI'K/Al_so it has a
ligible, t has to be large enough, typically larger than 1_5.Ionger range than the zero-order Casitoir equivalently the
This I’eads o the conditiouo(xo);—xo> 1.5, which yields zeroﬁgrder van der Waal@teraction free energy that decays

. = Xg 2.
roughly thatx, has to be larger tham 3 if our calculation is There is also no obvious connection between this result

to be accurate to within a few percent. For smaller values Ozfand the behavior of the fluctuation part of the interaction free

the intersurface separation the form of the regularized 'nterénergy of a system composed of unconnected counterions

action free energy Eq18) does not work. treated on the same level of approximatfdmn that case the

Figure 2 shows the dependence of the dimensionlesg,ctyation free energy decays &§52Inx,, which is much
fluctuational free energyV, on the dimensionless separation f5ster tharxy 7.

Xo. As already stated the regularization procedure #§)

can only be used for sufficiently large intersurface spacing.

The log—log plot(see the inset of Fig.)Zeveals that asymp- V. RESULTS: SMALL INTERSURFACE SEPARATION

totically the fluctuational contribution with an algebraic de- For small p|ate Separa’[ions the above procedure cannot
cay prevails. From the inset of Fig. 2 we read that the freayork because in that case we cannot write down explicitly
energy decays asymptotically gg" " and we also show how the asymptotic form of the Airy functions that would be valid
fast this asymptote is approached. The free energy stays an the whole range of integration in E¢L3). We found out

the asymptote essentially for al}) larger than about 6. that the best way to approach the evaluation of the fluctua-
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Loglx,] FIG. 2. The regular part of the fluctuational free energy
1 2 F=W, in the limit of large separationsee main tejt
A < T plotted with respect to the dimensionless separatjpon
-0.15 | N 1 The region around the critical separatiag=1.986,
™~ where the approximations are doubtful, is marked with
a box. On the inset there is the same plot in the loga-
rithmic scale (loF/F* |). One can read from the inset

FIF
b

/ E that the dependence of the free energy on the separation
7 % is algebraic with the exponent around 1,74
’ i -3 r axg 7). This power law asymptote is depicted with a
/ ) dotted line. The constanf* is defined asF*
J/ =SkM\3%¥167.
‘/ 4 |
| ~
-0.35 L L 1 1 1 1 1 1 1 1 1 1
2 24 28 32 38 4 44 48 52 586 6 64 68

tion determinant in this limit is via a perturbation analysis Lo <N|V(x)|N>
using the eigenvalue representation of the functional deter- AN=ANT W
minant Eq.(12).
The perturbative treatment of the evaluation of Ek) . f§X°|x—xo|sin2(N7r/2xo)dx 0
can be introduced as follows. The differential equation we =ANT Tk =AMyt 2 (23
have to solve is Jo st (N/2xp)x]dx
42 so the sum of the first order corrections to the log of the
— —— + g2+ Yo(Xo) +|X—Xo| | =0. (190  determinant of the operator E(@2) is
dx?

1_ 0
The last term can be treated as a linear perturbation potential EN: In )‘NNEN: Ay
V(X)=|x—Xq|. What we will do now is to evaluate the de-
terminant of the operator in E¢L9) in the form of a pertur- xg 2 1
bation expansion iV(x) up to and including the first order. T 2 o 2 .
N p—
The order zero of the perturbation expansion of the determi- m NT=1+ 2%/ m)1a™+ (xo/2)]

nant of the operator Eq19) gives (24)
5 . o Since the first term in this expression has already been cal-
de( — d—+q2+y0 = y3(X0) = w. culated, we now focus on the second one. This term is obvi-
dx? 272 +y, ously divergent. If we calculated the bulk contribution, there

would be an integral oveN instead of the discrete sum,
which is a consequence of the boundary conditions. The
regularized free energy is thifsobtained as the difference
between the sum and the integral of the same expression.
After some algebra the result of this manipulation is

SkeTAY[1 [ o2
Wl=—kB = O[EJ ! (Zxolw)dw(rr(cothww
0

The final integration over the wave vectQr has to be di-
vided into two parts becausg is negative, leading to

/!
_SkThs”

1673

0

n—————

m sinw  {(3)
Jowdwl = 7 (21

2
167
To obtain the first order term in the perturbation expan-

sion we shall use the product of the eigenvalues representa- 1+w
tion of the determinant of the operator which leads to the —COtTfW—l)—merZ arctanvv
following first order form of the free energy:
1 0
2Bg (o + —f dw( m(cothmw—1
f%;kBT—)\BSf quE In\L, (22) 2 V1-(2x3/m?) ( )
4 0 N
1 1

where A, represents the first order correction to the eigen- +2| arctans — o ” (25)

value of the differential equation Eq19). This correction
can be evaluated by standard formulas of the perturbatioBven without really calculating the second order we can nev-
theonyf? leading to the following result: ertheless say something about its magnitude. The maximal

Downloaded 14 Jul 2001 to 165.112.138.11. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Interactions in confined polyelectrolytes 1957

FIG. 3. The regular part of the fluctuational free energy
F=W, in the limit of small separations. The region
around the critical separatio=1.986, where the ap-
proximations are doubtful, is again marked with a box.
The zero-order approximation is shown dashed and the
result up to the first order solid. The error bars represent
the maximal possible error of the first order result. The
inset represents the log—log plot of the free energy,
wherefrom we deduce that for small separations the
fluctuation free energy scales x@z. The constanE*

is defined in Fig. 2.

FIF

difference between the first and the second order perturbaticsufficiently large intersurface separations, but could conceiv-

terms can be obtained in standard notatioff as ably survive all higher order perturbation terms. Unfortu-
1 nately all approximation schemes that we could think of
5)\hg H[<N|V(X)Z|N)—(<N|V(x)|N>)2], (26) broke down close to the transition point and we thus have to

leave the important question about the behavior of the fluc-
where A\ is the minimal difference betweeny and any tuation component of the pressure close to the transition un-
other \y. A short calculation then yieldss\!/\?  answered.
= x8/14.8. As expected, the reliability of the first order result
drops as we move towards largey, i.e., towards the mean
field phase transition from below.

Figure 3 shows the first and the second perturbation or- We have described all the contributions to the fluctua-
der of the regularized fluctuation free energy at small intertional free energy of the system. To evaluate the fluctuational
surface separations. The pressure obviously changes sign fpart of the pressure between the two surfaces the derivatives
sufficiently large separatiorx§ larger than~1.68 in Fig. 3. of the regularized free energy with respecttphave been
For small enough separations the free energy scales approxierformed numerically. The total pressure can thus be ob-
mately asxg2 which is the same scaling form as for the tained by simply taking the sum of mean-field and fluctua-
mean-field part. It seems to us that the change in sign of thgonal contributions Eq(16). Figure 4 shows the dimension-
pressure close to the transition poiy=1.986 is not due less total pressure as a function of the dimensionless
entirely to artifacts of the first order perturbation theory for separatiorx, which can be written, Eq16), as

VI. DISCUSSION

Log(x,)
-3 -2 -1 0 1 2 3
T . : . . 8

FIG. 4. The mean field pressufdotted—dashed line
and the total pressureaf,;==4, thick line and aye
=100, thin ling between two plates as a function of the
separation in the logarithmic scale. The uncertain re-
gion aroundx,=1.986, where the approximations are
doubtful, is marked by a box. The box contains only the
mean-field results which can be evaluated for the whole
range ofx, values. One can clearly observe the long
range tail stemming from the thermal fluctuations of the
monomer density field. Inset shows the total pressure—
mean field plus fluctuational—between two plates as a
1-8 function of the separation for different values of param-
eter a,=4100. A large deviation from the mean field
result is obtained foray=4, whereas fluctuations
hardly matter forey,==100. The constanp* is de-
fined asp* = 0%/2¢¢,.

15

iy
Log(Ip/pl)

plp ‘

05 | ’
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P(Xo) = Pme+ Prl 841+ Prul 611 probably most amenable to experimental observation and
verification. Since the fluctuation effects are stronger for
smalleraye we predict that they should be easier to measure

= kB_T ﬂy (Xo)#2(0) — M for very flexible polyelectrolytes, such as hyaluronic acid as
2 87 "0 64mx3 opposed to DNA.
The main drawback of this work is that the fluctuation
d Wo(X effects have been treated on a harmonic level whighniori
1/3 2( 0) .
—\g m( S ) assumes that they are sma_lll. However what saves us here is
0 that the mean-field interactions decay exponentially whereas
the fluctuation interactions decay algebraically. This is differ-
. ~, £@3)  f(Xo) ent than in the case of a simple, i.e., unconnected, Coulomb
=P” | Yo(X0)¥7(0) = aMFxg + ave | (27) fluid such as an inhomogeneous electrolyte. In that case both

the mean-field as well as the fluctuation interactions decay
exponentially but the mean-field interactions have a range
twice as long as the fluctuation interactich$he case of
polyelectrolytes is in this respect fundamentally different: the
range of fluctuation interactions larger then the range of
mean-field interactions and the use of harmonic approach to
fluctuations is probably better grounded in this casé’

wheref(x,) is a function ofx, only, %(0) is the normalized
dimensionless ¢, ay=(4w/3)(c/I7), and p*
=kgTAgayr/16m = 0?/2e€,. The parametetry,r depends
on the charge density on the plaiesthe linear charge den-
sity on the polyelectrolyte chainand on the segment length
of the polyelectrolyte”. If we put in experimentally reason-
able values ofr~ey/1,35 nnf, then ay is about 100 for
DNA (a relatively stiff polyelectrolyteand around 4 for hy-  ACKNOWLEDGEMENTS
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